

How To Select its Parents in the Tangle

Vidal Attias, <u>Quentin Bramas</u> NETYS 2019, Marrakech, June, 21st

bramas@unistra.fr

Slides available at http://bramas.fr

©2015 ICube

Introduction

Blockchain:

The Tangle (IOTA)

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

You come up with a DAG (Directed Acyclic Graph)

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

You come up with a DAG (Directed Acyclic Graph)

You're only limited by bandwidth and storage

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

A new site and its parents should not create conflicts.

The Tangle (IOTA)

How to read a value?

The Tangle (IOTA)

How to read a value?

If you take a tip, you can order transactions and do the same as in a blockchain

The Tangle (IOTA)

How to read a value?

What if tips are conflicting?

A new site cannot confirm conflicting sites

The Tangle (IOTA)

The Tangle (IOTA)

Tip Selection Algorithm (TSA):

- so we know how to read values
- so we know where to extend the Tangle

iCU3E

The Tangle

The Tangle (IOTA)

- so we know how to read values
- so we know where to extend the Tangle

In Bitcoin, we read values from, and we try to extend, the longest chain. If you don't follow this, you'll lose money.

The Tangle (IOTA)

The Tangle (IOTA)

Should be chosen with higher probability

ICUSE MCMC Tip selection algorithm

ICUSE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site

JCUBE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site

JCUBE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

ICUSE MCMC Tip selection algorithm

ICUBE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

ICUBE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

ICUBE MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

iCU3E MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

 $\| P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,B}) + \int (\Delta_{A,C})}$

iCU3E MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

 $\|P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,B}) + \int (\Delta_{A,C})}$

MCMC

*i***CU3E** MCMC Tip selection algorithm

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

 $\| P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,B}) + \int (\Delta_{A,C})}$

MCMC

LMCMC

 $f(\Delta) = e^{-\lambda \Delta}$

 $f(\Delta) = \Delta$

 $w(m) = 1 + \sum w(c)/2$ CE children

Random Walk

Transition function:

Random Walk

Transition function:

iCU3E

 $P_{A \to B} = \frac{11}{11 + 12}$

Comparison

Number of tips

How many tips are left behind ?

Number of tips

How many tips are left behind ?

How many tips over the time ?

Number of tips

How many tips are left behind ?

How many tips over the time ?

iCU3E

Tips over time

iCU3E

Tips over time

Double Spending Attack

Alice sends 10 IOTA to Bob for a sandwich

Parasite Chain Attack

- Alice sends 10 IOTA to Bob for a sandwich
- Bob waits to see the transaction in the Tangle

Parasite Chain Attack

- Alice sends 10 IOTA to Bob for a sandwich
- Bob waits to see the transaction in the Tangle
- ▶ Bob gives Alice the sandwich

Parasite Chain Attack

- ▶ Alice sends 10 IOTA to Bob for a sandwich
- Bob waits to see the transaction in the Tangle
- Bob gives Alice the sandwich
- Alice generates a lots of transactions so that her first transaction is discarded

Parasite Chain Attack

Double Spending Attack

- Alice sends 10 IOTA to Bob for a sandwich
- Bob waits to see the transaction in the Tangle
- ▶ Bob gives Alice the sandwich
- Alice generates a lots of transactions so that her first transaction is discarded

Alice eats the sandwich

The parasite chain attack

The parasite chain attack

How many red site so that:

P(TSA(6) ∈ parasite) ≥ 1/2

Against MCMC

Against MCMC

Against MCMC

ICUSE Resistance to parasite chain

Future Work

We defined a good tip selection algorithm

Future Work

We defined a good tip selection algorithm

Future Work

Even better tip selection algorithms

We defined a good tip selection algorithm

Future Work

Even better tip selection algorithms

Thank you for your attention!